Our solution is grounded in decades of our founders’ research.

Born at the Weizmann Institute and developed with $20M+ academic funding. Below are related publications by members of our founding team:

1. Livneh, U., and Paz, R. Aversive-bias and stage-selectivity in neurons of the primate amygdala during acquisition, extinction, and overnight retention. J Neurosci 32, 8598-8610. 2012

2. Genud-Gabai, R., Klavir, O., and Paz, R.. Safety signals in the primate amygdala. J Neurosci 33, 17986-17994. 2013

3. Taub, A.H., Shohat, Y., and Paz, R. Long time-scales in primate amygdala neurons support aversive learning. Nat Commun 9, 4460. 2018

4. Taub, A.H., Perets, R., Kahana, E., and Paz, R. Oscillations Synchronize Amygdala-to-Prefrontal Primate Circuits during Aversive Learning. Neuron 97, 291-298 e293. 2018
5. Reitich-Stolero, T., and Paz, R. Affective memory rehearsal with temporal sequences in amygdala neurons. Nat Neurosci 22, 2050-2059. 2019
6. Pryluk, R., Shohat, Y., Morozov, A., Friedman, D., Taub, A.H., and Paz, R. Shared yet dissociable neural codes across eye gaze, valence and expectation. Nature 586, 95-100. 2020
7. Pryluk, R., Sirigu, A., and Paz, R. Two sides of the same amygdala: From shared neural mechanisms to comorbidity of social and affective disorders. Neuron 109, 3908-3911. 2021
8. Livneh, U., and Paz, R. Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories. Neuron 75, 133-142. 2012
9. Klavir, O., Genud-Gabai, R., and Paz, R. Functional Connectivity between Amygdala and Cingulate Cortex for Adaptive Aversive Learning. Neuron 80, 1290-1300. 2013
10. Klavir, O., Genud-Gabai, R., and Paz, R. Low-frequency stimulation depresses the primate anterior-cingulate-cortex and prevents spontaneous recovery of aversive memories. J Neurosci 32, 8589-8597. 2012
11. Klavir, O., Prigge, M., Sarel, A., Paz, R., and Yizhar, O.. Manipulating fear associations via optogenetic modulation of amygdala inputs to prefrontal cortex. Nature Neuroscience 20, 836. 2017
12. Pryluk, R., Kfir, Y., Gelbard-Sagiv, H., Fried, I., and Paz, R. A Tradeoff in the Neural Code across Regions and Species. Cell 176, 597-609. 2019
13. Cohen, Y., Schneidman, E., and Paz, R. The geometry of neuronal representations during rule learning reveals complementary roles of cingulate cortex and putamen. Neuron 109, 839-851. 2021

14. Resnik, J., and Paz, R. Fear generalization in the primate amygdala. Nat Neurosci 18, 188-190. 2015

15. Kornilov, E., Halperin, D., Sheffer, M., Perets, R., Ishkakova, L., and Paz, R. Dynamical modulation of valence representations in the primate amygdala using eBCI. Submitted. 2025
16. Halperin, D., Kornilov, E., Sheffer, M., Perets, R., Ishkakova, L., and Paz, R. Modulating connectivity in primate amygdala networks using eBCI. Submitted. 2025
17. Schechtman, E., Laufer, O., and Paz, R. Negative valence widens generalization of learning. J Neurosci 30, 10460-10464. 2010
18. Resnik, J., Sobel, N., and Paz, R. Auditory aversive learning increases discrimination thresholds. Nat Neurosci 14, 791-796. 2011

19. Laufer, O., and Paz, R. Monetary loss alters perceptual thresholds and compromises future decisions via amygdala and prefrontal networks. J Neurosci 32, 6304-6311. 2012

20. Dunsmoor, J.E., and Paz, R. Fear Generalization and Anxiety: Behavioral and Neural Mechanisms. Biol Psychiatry. 2015
21. Laufer, O., Israeli, D., and Paz, R. Behavioral and Neural Mechanisms of Overgeneralization in Anxiety. Curr Biol 26, 713-722. 2016
22. El-Bar, N., Laufer, O., Yoran-Hegesh, R., and Paz, R. Over-generalization in youth with anxiety disorders. Soc Neurosci 12, 76-85. 2017
23. Shalev, L., Paz, R., and Avidan, G. Visual Aversive Learning Compromises Sensory Discrimination. J Neurosci 38, 2766-2779. 2018
24. Bezalel, V., Paz, R., and Tal, A. Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning. bioRxiv. 2018
25. Aberg, K.C., and Paz, R. Stress-induced avoidance in mood disorders. Nat Hum Behav 6, 915-918. 2022
26. Aberg, K.C., Toren, I., and Paz, R. A neural and behavioral trade-off between value and uncertainty underlies exploratory decisions in normative anxiety. Mol Psychiatry 27, 1573-1587. 2022
27. Aberg, K.C., Toren, I., and Paz, R. Irrelevant Threats Linger and Affect Behavior in High Anxiety. J Neurosci 43, 656-671. 2023
  1. Paz, R., Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., and Fried, I. A neural substrate in the human hippocampus for linking successive events. Proc Natl Acad Sci U S A 107, 6046-6051. 2010
29. Reitich-Stolero, T., Halperin, D., Morris, G., Goldstein, L., Bergman, L., Fahoum, F., Strauss, I., and Paz, R. Aversive generalization in human amygdala neurons. Curr Biol. 2025
30. Reitich-Stolero, T., Aberg, K.C., Halperin, D., Morris, G., Goldstein, L., Fahoum, F., Strauss, I., and Paz, R. Rate and noise in human amygdala drive excessive exploration during aversive learning. Nature Under review. 2025
31. Eitan et al. One year double blind study of high vs low frequency subcallosal cingulate stimulation for depression. Journal of Psychiatric Research 96, 2018
32. Menchon et al. A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive-compulsivedisorder. Molecular Psychiatry, October 2019
33. Marmor et al. Local vs. volume conductance activity of field potentials in the human subthalamic nucleus. Journal of Neurophysiology 117/2140, 2017
34. Eitan et al. Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Frontiers in Systems Neuroscience, October 2013
35. Marmor et al. Movement context modulates neuronal activity in motor and limbic-associative domains of the human parkinsonian subthalamic nucleus. Neurobiology of Disease. 202035. Marmor et al. Movement context modulates neuronal activity in motor and limbic-associative domains of the human parkinsonian subthalamic nucleus. Neurobiology of Disease. 2020
36. Rappel et al. Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder. Translational Psychiatry 8/118, 2018
37. Rappel et al. Theta-Alpha Oscillations Characterize Emotional Subregion in the Human Ventral Subthalamic Nucleus. Movement Disorders, 2019
38. Iskakova et al. Modulation of dopamine tone induces frequency shifts in cortico-basal ganglia beta oscillations. Nature Communications 12(1), Dec 2021
39. Sand et al. Deep Brain Stimulation Can Differentiate Subregions of the Human Subthalamic Nucleus Area by EEG Biomarkers. Frontier in Systems Neuroscience, October 2021
40. Sand et. al. Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients. Journal of Neural Engineering 18, 2021